

1st Brazilian Workshop on Interior Point Methods

27-28 April, 2015 - Campinas, Brazil

The advantages of interior point methods for decomposition techniques

Pedro Munari

Universidade Federal de São Carlos (UFSCar) munari@dep.ufscar.br

Decomposition techniques;

Decomposition techniques;

Column generation technique and branch-and-price methods;

- Decomposition techniques;
- Column generation technique and branch-and-price methods;
- Stabilized column generation using the interior point method;

- Decomposition techniques;
- Column generation technique and branch-and-price methods;
- Stabilized column generation using the interior point method;
- Interior point branch-price-and-cut;

- Decomposition techniques;
- Column generation technique and branch-and-price methods;
- Stabilized column generation using the interior point method;
- Interior point branch-price-and-cut;
- Computational results;

- Decomposition techniques;
- Column generation technique and branch-and-price methods;
- Stabilized column generation using the interior point method;
- Interior point branch-price-and-cut;
- Computational results;
- Conclusions.

A formulation that challenges state-of-the-art implementations;

- A formulation that challenges state-of-the-art implementations;
- Special structure in the coefficient matrix, which allows a decomposition (e.g. Dantzig-Wolfe decomposition).

- A formulation that challenges state-of-the-art implementations;
- Special structure in the coefficient matrix, which allows a decomposition (e.g. Dantzig-Wolfe decomposition).

- A formulation that challenges state-of-the-art implementations;
- Special structure in the coefficient matrix, which allows a decomposition (e.g. Dantzig-Wolfe decomposition).
- In the context of column generation and branch-and-price, we have to solve hundreds of thousands of LP problems in sequence;

- A formulation that challenges state-of-the-art implementations;
- Special structure in the coefficient matrix, which allows a decomposition (e.g. Dantzig-Wolfe decomposition).
- In the context of column generation and branch-and-price, we have to solve hundreds of thousands of LP problems in sequence;
- This way, it is important to use an efficient LP algorithm;

- A formulation that challenges state-of-the-art implementations;
- Special structure in the coefficient matrix, which allows a decomposition (e.g. Dantzig-Wolfe decomposition).
- In the context of column generation and branch-and-price, we have to solve hundreds of thousands of LP problems in sequence;
- This way, it is important to use an efficient LP algorithm;
- ▶ We should exploit also additional advantages offered by the algorithm.

 We are interested in solving a linear programming problem, called the Master Problem (MP):

$$\begin{aligned} z^{\star} &:= \min \quad \sum_{j \in N} c_j \lambda_j, \\ \text{s.t.} \quad \sum_{j \in N} a_j \lambda_j &= b, \\ \lambda_j &\geq 0, \qquad \forall j \in N \end{aligned}$$

► N is too big;

 We are interested in solving a linear programming problem, called the Master Problem (MP):

$$\begin{aligned} z^{\star} &:= \min \quad \sum_{j \in N} c_j \lambda_j, \\ \text{s.t.} \quad \sum_{j \in N} a_j \lambda_j &= b, \\ \lambda_j &\geq 0, \qquad \forall j \in N \end{aligned}$$

N is too big;

• The columns (c_j, a_j) are not known explicitly;

 We are interested in solving a linear programming problem, called the Master Problem (MP):

$$\begin{aligned} z^{\star} &:= \min \quad \sum_{j \in N} c_j \lambda_j, \\ \text{s.t.} \quad \sum_{j \in N} a_j \lambda_j &= b, \\ \lambda_j &\geq 0, \qquad \forall j \in N \end{aligned}$$

- N is too big;
- The columns (c_j, a_j) are not known explicitly;
- We know how to generate them!

► The Restricted Master Problem (RMP):

$$egin{aligned} & z_{RMP} := \min & \sum_{j \in \overline{N}} c_j \lambda_j, \ & ext{ s.t. } & \sum_{j \in \overline{N}} a_j \lambda_j = b, \ & \lambda_j \geq 0, & \forall j \in \overline{N}. \end{aligned}$$

• with $\overline{N} \subset N$.

► The Restricted Master Problem (RMP):

$$\begin{split} z_{RMP} &:= \min \quad \sum_{j \in \overline{N}} c_j \lambda_j, \\ \text{s.t.} \quad \sum_{j \in \overline{N}} a_j \lambda_j = b, \\ \lambda_j \geq 0, \qquad \forall j \in \overline{N}. \end{split}$$

• with $\overline{N} \subset N$.

 \blacktriangleright Let $(\bar{\lambda},\bar{u})$ be a primal-dual optimal solution of the RMP.

► The Restricted Master Problem (RMP):

$$egin{aligned} &z_{RMP} := \min & \sum_{j \in \overline{N}} c_j \lambda_j, \ & ext{ s.t. } & \sum_{j \in \overline{N}} a_j \lambda_j = b, \quad (u) \ & \lambda_j \geq 0, \qquad orall j \in \overline{N}. \end{aligned}$$

• with $\overline{N} \subset N$.

 \blacktriangleright Let $(\bar{\lambda},\bar{u})$ be a primal-dual optimal solution of the RMP.
• Solution $\overline{\lambda}$ of the RMP \Rightarrow solution $\hat{\lambda}$ of the MP;

- Solution $\overline{\lambda}$ of the RMP \Rightarrow solution $\hat{\lambda}$ of the MP;
- How to know if $\hat{\lambda}$ is optimal in the MP?

- Solution $\overline{\lambda}$ of the RMP \Rightarrow solution $\hat{\lambda}$ of the MP;
- How to know if $\hat{\lambda}$ is optimal in the MP?
 - Call the pricing subproblem (oracle):

$$z_{SP} := \min\{0, c_j - \overline{u}^T a_j | (c_j, a_j) \in \mathcal{A}\}.$$

• (c_j, a_j) are the variables in the subproblem;

- Solution $\overline{\lambda}$ of the RMP \Rightarrow solution $\hat{\lambda}$ of the MP;
- How to know if $\hat{\lambda}$ is optimal in the MP?
 - Call the pricing subproblem (oracle):

$$z_{SP} := \min\{0, c_j - \overline{u}^T a_j | (c_j, a_j) \in \mathcal{A}\}.$$

- (c_j, a_j) are the variables in the subproblem;
- If $z_{SP} < 0$, then new columns are generated;

- Solution $\overline{\lambda}$ of the RMP \Rightarrow solution $\hat{\lambda}$ of the MP;
- How to know if $\hat{\lambda}$ is optimal in the MP?
 - Call the pricing subproblem (oracle):

$$z_{SP} := \min\{0, c_j - \overline{u}^T a_j | (c_j, a_j) \in \mathcal{A}\}.$$

- (c_j, a_j) are the variables in the subproblem;
- If $z_{SP} < 0$, then new columns are generated;
- Otherwise, an optimal solution of the MP was found!

Optimal solutions, typically obtained by the simplex method:

Optimal solutions, typically obtained by the simplex method:

 \Rightarrow Extreme points of the RMP;

- Optimal solutions, typically obtained by the simplex method:
 ⇒ Extreme points of the RMP;
- They oscillate too much between consecutive iterations;

- Optimal solutions, typically obtained by the simplex method:
 ⇒ Extreme points of the RMP;
- ► They oscillate too much between consecutive iterations;
 ⇒ u^{j+1} is typically far from u^j;

- Optimal solutions, typically obtained by the simplex method:
 ⇒ Extreme points of the RMP;
- ► They oscillate too much between consecutive iterations;
 ⇒ u^{j+1} is typically far from u^j;
- Slow convergence of the method.

Oscillation in a real instance

 $||u^j - u^{j+1}||_2$, for each iteration j:

Stabilization techniques: avoid extreme solutions!

Stabilization techniques: avoid extreme solutions!

 \Rightarrow use a point in the interior of the feasible set;

Stability center: prohibit the next dual solution to go far from it;

Stability center: prohibit the next dual solution to go far from it;

Stability center: prohibit the next dual solution to go far from it;

► Stabilization techniques: avoid extreme solutions!
⇒ use a point in the interior of the feasible set;

Most of them: modify the master problem!

- Stabilization techniques: avoid extreme solutions!
 - \Rightarrow use a point in the interior of the feasible set;
- Most of them: modify the master problem!
- Add variables, bounds, constraints, penalties, …
 - \Rightarrow The master problem may become more difficult to solve;

- Stabilization techniques: avoid extreme solutions!
 - \Rightarrow use a point in the interior of the feasible set;
- Most of them: modify the master problem!
- Add variables, bounds, constraints, penalties, ...
 - \Rightarrow The master problem may become more difficult to solve;
 - \Rightarrow Some of them may be difficult to implement;

- ► Stabilization techniques: avoid extreme solutions!
 - \Rightarrow use a point in the interior of the feasible set;
- Most of them: modify the master problem!
- Add variables, bounds, constraints, penalties, ...
 - \Rightarrow The master problem may become more difficult to solve;
 - \Rightarrow Some of them may be difficult to implement;
 - \Rightarrow Several parameters to tune.

 The column generation is more efficient when based on well-centered interior points of the feasible set;

- The column generation is more efficient when based on well-centered interior points of the feasible set;
- So, why not using an interior point method?

- The column generation is more efficient when based on well-centered interior points of the feasible set;
- So, why not using an interior point method?
- This is straightforward: does not require any changes in the RMP nor parameter adjustments;

- The column generation is more efficient when based on well-centered interior points of the feasible set;
- So, why not using an interior point method?
- This is straightforward: does not require any changes in the RMP nor parameter adjustments;
- Interior point methods will provided naturally stable solutions.

Pedro Munari [munari@dep.ufscar.br] - 1st Brazilian Workshop in Interior Point Methods, 27-28th April 2015, Campinas, Brazil

Interior point method

Pedro Munari [munari@dep.ufscar.br] - 1st Brazilian Workshop in Interior Point Methods, 27-28th April 2015, Campinas, Brazil

Interior point method

Pedro Munari [munari@dep.ufscar.br] - 1st Brazilian Workshop in Interior Point Methods, 27-28th April 2015, Campinas, Brazil

Interior point method

Advantages:

▶ We save time, as we stop early;

Advantages:

- ▶ We save time, as we stop early;
- The solution is well-centered in the feasible set;

Advantages:

- We save time, as we stop early;
- The solution is well-centered in the feasible set;
- Early termination: good sub-optimal solutions.

Advantages:

- We save time, as we stop early;
- The solution is well-centered in the feasible set;
- Early termination: good sub-optimal solutions.
- The column corresponds to a deeper cut in the dual space.

Non-optimal solutions from interior point method

Non-optimal solutions from interior point method

Primal-dual interior point method to get primal-dual solutions;

- Primal-dual interior point method to get primal-dual solutions;
- Suboptimal solution (λ̃, ũ̃) (ε-optimal solution): we stop the interior point method with optimality tolerance ε.

- Primal-dual interior point method to get primal-dual solutions;
- Suboptimal solution (λ̃, ũ̃) (ε-optimal solution): we stop the interior point method with optimality tolerance ε.
- The distance to optimality ε is dynamically adjusted according to the relative gap;

- Primal-dual interior point method to get primal-dual solutions;
- Suboptimal solution (λ̃, ũ̃) (ε-optimal solution): we stop the interior point method with optimality tolerance ε.
- The distance to optimality ε is dynamically adjusted according to the relative gap;

$$\varepsilon = \min\{\varepsilon_{\max}, \ gap/D\}$$

- Primal-dual interior point method to get primal-dual solutions;
- Suboptimal solution (λ̃, ũ̃) (ε-optimal solution): we stop the interior point method with optimality tolerance ε.
- The distance to optimality ε is dynamically adjusted according to the relative gap;

$$\varepsilon = \min\{\varepsilon_{\max}, \ gap/D\}$$

• gap = (UB - LB)/(1 + |UB|);

- Primal-dual interior point method to get primal-dual solutions;
- Suboptimal solution (λ̃, ũ̃) (ε-optimal solution): we stop the interior point method with optimality tolerance ε.
- The distance to optimality ε is dynamically adjusted according to the relative gap;

$$\varepsilon = \min\{\varepsilon_{\max}, \ gap/D\}$$

- gap = (UB LB)/(1 + |UB|);
- D: degree of optimality (fixed);

- 1. Input: Initial RMP; parameters κ , ε_{\max} , D > 1, $\delta > 0$, .
- 2. set LB = $-\infty$, UB = ∞ , gap = ∞ , $\varepsilon = 0.5$;
- 3. while $(gap > \delta)$ do
- 4. find a well-centered ε -optimal solution $(\tilde{\lambda}, \tilde{u})$ of the RMP;

5.
$$\mathsf{UB} = \min\{\mathsf{UB}, \tilde{z}_{RMP}\};$$

6. call the oracle with the query point \tilde{u} ;

7.
$$\mathsf{LB} = \max\{\mathsf{LB}, \kappa \tilde{z}_{SP} + b^T \tilde{u}\};$$

8.
$$gap = (UB - LB)/(1 + |UB|);$$

9.
$$\varepsilon = \min\{\varepsilon_{\max}, \operatorname{gap}/D\};$$

10. if $(\tilde{z}_{SP} < 0)$ then add the new columns into the RMP;

11. end(while)

- 1. Input: Initial RMP; parameters κ , ε_{\max} , D > 1, $\delta > 0$, .
- 2. set LB = $-\infty$, UB = ∞ , gap = ∞ , $\varepsilon = 0.5$;
- 3. while $(gap > \delta)$ do
- 4. find a well-centered ε -optimal solution $(\tilde{\lambda}, \tilde{u})$ of the RMP;

5.
$$\mathsf{UB} = \min\{\mathsf{UB}, \tilde{z}_{RMP}\};$$

6. call the oracle with the query point \tilde{u} ;

7.
$$\mathsf{LB} = \max\{\mathsf{LB}, \kappa \tilde{z}_{SP} + b^T \tilde{u}\};$$

8.
$$gap = (UB - LB)/(1 + |UB|);$$

- 9. $\varepsilon = \min\{\varepsilon_{\max}, \ gap/D\};$
- 10. if $(\tilde{z}_{SP} < 0)$ then add the new columns into the RMP;
- 11. end(while)

Implementation in C, using interior point solver HOPDM;

- Implementation in C, using interior point solver HOPDM;
- Publicly available code

http://www.maths.ed.ac.uk/~gondzio/software/pdcgm.html

- Implementation in C, using interior point solver HOPDM;
- Publicly available code

http://www.maths.ed.ac.uk/~gondzio/software/pdcgm.html

Source-code examples are provided for 6 different applications:

- Cutting stock problem;
- Vehicle routing problem;
- Capacitated lot sizing;
- Multiple kernel learning;
- Two-stage stochastic programming;
- Multicommodity network flow.

European Journal of Operational Research 224 (2013) 41-51

Contents lists available at SciVerse ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

New developments in the primal-dual column generation technique

Jacek Gondzio^a, Pablo González-Brevis^{a,*,1}, Pedro Munari^{b,2}

^aSchool of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
^bInstituto de Ciências Matemáticas e de Computação, University of São Paulo, Av. Trabalhador São-carlense, 400, Centro, Cx. Postal 668, CEP 13560-970 São Carlos, SP, Brazil

European Journal of Operational Research 224 (2013) 41-51

Contents lists available at SciVerse ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

New developments in the primal-dual column generation technique

Iacek Gondzio^a, Pablo González-Brevis^{a,*,1}, Pedro Munari^{b,2}

^a School of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom ^b Instituto de Ciências Matemáticas e de Computação. University of São Paulo. Av. Trabalhador São-carlense. 400. Centro. Cx. Postal 668. CEP 13560-970 São Carlos. SP. Brazil

Theoretical and computational results:

European Journal of Operational Research 224 (2013) 41-51

Contents lists available at SciVerse ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

New developments in the primal-dual column generation technique

Jacek Gondzio^a, Pablo González-Brevis^{a,*,1}, Pedro Munari^{b,2}

^aSchool of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
^bInstituto de Ciências Matemáticas e de Computação, University of São Paulo, Av. Trabalhador São-carlense, 400, Centro, Cx. Postal 668, CEP 13560-970 São Carlos, SP, Brazil

Theoretical and computational results;

Linear relaxations of combinatorial optimization problems:

European Journal of Operational Research 224 (2013) 41-51

Contents lists available at SciVerse ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

New developments in the primal-dual column generation technique

Jacek Gondzio^a, Pablo González-Brevis^{a,*,1}, Pedro Munari^{b,2}

³School of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
^bInstituto de Cièncias Matemáticas e de Computação, University of São Paulo, Av. Trabalhador São-carlense, 400, Centro, Cx. Postal 668, CEP 13560-970 São Carlos, SP, Brazil

Theoretical and computational results;

Linear relaxations of combinatorial optimization problems:

Cutting stock problem (CSP);

European Journal of Operational Research 224 (2013) 41-51

Contents lists available at SciVerse ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

New developments in the primal-dual column generation technique

Jacek Gondzio^a, Pablo González-Brevis^{a,*,1}, Pedro Munari^{b,2}

³School of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
^bInstituto de Cièncias Matemáticas e de Computação, University of São Paulo, Av. Trabalhador São-carlense, 400, Centro, Cx. Postal 668, CEP 13560-970 São Carlos, SP, Brazil

- Theoretical and computational results;
- Linear relaxations of combinatorial optimization problems:
 - Cutting stock problem (CSP);
 - Vehicle routing problem with time windows (VRPTW);

European Journal of Operational Research 224 (2013) 41-51

Contents lists available at SciVerse ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

New developments in the primal-dual column generation technique

Jacek Gondzio^a, Pablo González-Brevis^{a,*,1}, Pedro Munari^{b,2}

³School of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
^bInstituto de Cièncias Matemáticas e de Computação, University of São Paulo, Av. Trabalhador São-carlense, 400, Centro, Cx. Postal 668, CEP 13560-970 São Carlos, SP, Brazil

- Theoretical and computational results;
- Linear relaxations of combinatorial optimization problems:
 - Cutting stock problem (CSP);
 - Vehicle routing problem with time windows (VRPTW);
 - Capacitated lot sizing with setup times (CLSPST).

Number of iterations

Relative to PDCGM	CSP	VRPTW	CLSPST
SCGM	1.52	1.33	1.60
ACCPM	2.41	4.86	1.26

CPU time (s)

Relative to PDCGM	CSP	VRPTW	CLSPST
SCGM	3.50	1.95	1.26
ACCPM	8.97	4.01	1.27

Oscillation in a VRPTW instance (Solomon C207)

 $\|u^j-u^{j+1}\|_2$, for each iteration j:

 The bottleneck in the previously addressed problems was in the subproblems: combinatorial optimization problems;

- The bottleneck in the previously addressed problems was in the subproblems: combinatorial optimization problems;
- Would PDCGM be successful in problems with easy subproblems?

- The bottleneck in the previously addressed problems was in the subproblems: combinatorial optimization problems;
- ▶ Would PDCGM be successful in problems with easy subproblems?
- We have selected three classes of problems:
 - Two-stage stochastic programming (TSSP);
 - Multiple kernel learning (MKL);
 - Multicommodity network flow (MCNF).

- The bottleneck in the previously addressed problems was in the subproblems: combinatorial optimization problems;
- ▶ Would PDCGM be successful in problems with easy subproblems?
- ▶ We have selected three classes of problems:
 - Two-stage stochastic programming (TSSP);
 - Multiple kernel learning (MKL);
 - Multicommodity network flow (MCNF).
- Gondzio, González-Brevis and Munari, Large-scale optimization with the primal-dual column generation method, 2014. (MPC, Under review)

- The bottleneck in the previously addressed problems was in the subproblems: combinatorial optimization problems;
- ▶ Would PDCGM be successful in problems with easy subproblems?
- ▶ We have selected three classes of problems:
 - Two-stage stochastic programming (TSSP);
 - Multiple kernel learning (MKL);
 - Multicommodity network flow (MCNF).
- Gondzio, González-Brevis and Munari, Large-scale optimization with the primal-dual column generation method, 2014. (MPC, Under review)
- http://www.maths.ed.ac.uk/~gondzio/software/pdcgm.html

Two-stage stochastic programming problem (TSSP)

Two-stage stochastic programming problem (TSSP)

- Model many real-life situations taking uncertainty into account;
- Two interconnected problems: first-stage and recourse;
- Deterministic equivalent problem (DEP):

$$\begin{split} \min_{x,y} & c^T x + \sum_{i \in \mathcal{S}} p_i q_i^T y_i, \\ \text{s.t.} & Ax &= b, \\ & T_i x + W_i y_i = h_i, \quad \forall i \in \mathcal{S}, \\ & x \geq 0, \\ & y_i \geq 0, \qquad \forall i \in \mathcal{S}. \end{split}$$

Special structure of the model

Special structure of the model

TSSP: Computational experiments

- TSSP instances that have been widely used in literature (Ariyawansa and Felt, 2004; Holmes, 1995);
- ▶ 75 instances, up to 37500 scenarios;

TSSP: Computational experiments

- TSSP instances that have been widely used in literature (Ariyawansa and Felt, 2004; Holmes, 1995);
- 75 instances, up to 37500 scenarios;
- ▶ PDCGM: Linux PC, Intel Core i7 2.8 GHz CPU, 8.0 GB of memory;
- We compare PDCGM with the following methods:
 - Standard cutting plane method (Benders);
 - Level-set method (bundle).

TSSP: Computational experiments

- TSSP instances that have been widely used in literature (Ariyawansa and Felt, 2004; Holmes, 1995);
- 75 instances, up to 37500 scenarios;
- ▶ PDCGM: Linux PC, Intel Core i7 2.8 GHz CPU, 8.0 GB of memory;
- We compare PDCGM with the following methods:
 - Standard cutting plane method (Benders);
 - Level-set method (bundle).
- ▶ We have taken the results of both methods from Zverovich et al. (2012), which used a Core i5 2.4 GHz CPU and 6 GB of memory.

TSSP: Number of iterations

TSSP: CPU Time (seconds)

Computers & Operations Research 40 (2013) 2026-2036

Using the primal-dual interior point algorithm within the branch-price-and-cut method

Pedro Munari a,*,1, Jacek Gondzio b

* Instituto de Ciências Matemáticas e de Computação, University of São Paulo, Av. Trabalhador, São-carlense, 400 - Centro, Cx. Postal 668, CEP 13560-970, São Carlos-SP, Brazil

Interior point branch-price-and-cut method:

- Primal-dual interior point method;
- Well-centered dual solutions to generate columns and valid inequalities;
- Early termination;
- Vehicle routing problem with time windows (VRPTW);

Large-scale discrete problems

 Vast majority of branch-price-and-cut methods are based on optimal solutions obtained with the simplex method;

- Vast majority of branch-price-and-cut methods are based on optimal solutions obtained with the simplex method;
- Change of strategy!

- Vast majority of branch-price-and-cut methods are based on optimal solutions obtained with the simplex method;
- Change of strategy!
- It is not just replacing a simplex-type method.

- Vast majority of branch-price-and-cut methods are based on optimal solutions obtained with the simplex method;
- Change of strategy!
- It is not just replacing a simplex-type method.
- Rethink every piece of a standard BPC: column generation, valid inequalities, branching, ...

- Primal-dual column and cut generation:
 - We modify the Oracle: two types of subproblems;

- Primal-dual column and cut generation:
 - We modify the Oracle: two types of subproblems;

Early branching:

• Stop CG with a loose tolerance (e.g. 10^{-3}) and branch!

- Primal-dual column and cut generation:
 - We modify the Oracle: two types of subproblems;

Early branching:

- Stop CG with a loose tolerance (e.g. 10^{-3}) and branch!
- ▶ In all cases: we use a well-centered suboptimal solution.

Vehicle Routing Problem with Time Windows (VRPTW)

- Interior point branch-price-and-cut (IPBPC);
- The IPBPC performance was compared to the best results that were available in the literature for a *simplex-based* BPC:
 - ▶ DLH08: Desaulniers, Lessard and Hadjar (2008), Transp. Science.

Number of nodes

Instance

Nodes

Comparing to a simplex-based BPC

Number of nodes				
	DLH08	IPBPC	Ratio	
C1	9	9	1.00	
RC1	104	78	1.33	
R1	239	182	1.31	
	352	269	1.31	

Valid inequalities

Comparing to a simplex-based BPC

Number of valid inequalities				
	DLH08	IPBPC	Ratio	
C 1	0	0	1.00	
RC1	2199	1191	1.85	
R1	3391	2140	1.58	
	5590	3331	1.68	

CPU time

Seconds

Comparing to a simplex-based BPC

CPU time (sec)				
	DLH08	IPBPC	Ratio	
C1	158	28	5.69	
RC1	17198	3472	4.95	
R1	27928	4621	6.04	
	45284	8121	5.58	

 The primal-dual interior point method offers a natural way of stabilizing column generation;

- The primal-dual interior point method offers a natural way of stabilizing column generation;
- Does not require changes to the RMP nor parameter tunning;

- The primal-dual interior point method offers a natural way of stabilizing column generation;
- Does not require changes to the RMP nor parameter tunning;
- Computational experiments indicate that this approach is successful in different types applications;

- The primal-dual interior point method offers a natural way of stabilizing column generation;
- Does not require changes to the RMP nor parameter tunning;
- Computational experiments indicate that this approach is successful in different types applications;
- Reductions in the number of iterations and CPU time when compared to standard column generation, ACCPM, bundle methods.

Thank you!

Questions?

PDCGM webpage:

http://www.maths.ed.ac.uk/~gondzio/software/pdcgm.html

munari@dep.ufscar.br